On coefficients of powers of polynomials and their compositions over finite fields
نویسندگان
چکیده
For any given polynomial f over the finite field Fq with degree at most q−1, we associate it with a q×q matrix A(f) = (aik) consisting of coefficients of its powers (f(x)) = ∑q−1 i=0 aikx i modulo x−x for k = 0, 1, . . . , q−1. This matrix has some interesting properties such as A(g◦f) = A(f)A(g) where (g◦f)(x) = g(f(x)) is the composition of the polynomial g with the polynomial f . In particular, A(f(k)) = (A(f)) for any k-th composition f(k) of f with k ≥ 0. As a consequence, we prove that the rank of A(f) gives the cardinality of the value set of f . Moreover, if f is a permutation polynomial then the matrix associated with its inverse A(f(−1)) = A(f)−1 = PA(f)P where P is an antidiagonal permutation matrix. As an application, we study the period of a nonlinear congruential pseduorandom sequence ā = {a0, a1, a2, ...} generated by an = f(a0) with initial value a0, in terms of the order of the associated matrix. Finally we show that A(f) is diagonalizable in some extension field of Fq when f is a permutation polynomial over Fq.
منابع مشابه
Generators of Finite Fields with Powers of Trace Zero and Cyclotomic Function Fields
Using the relation between the problem of counting irreducible polynomials over finite fields with some prescribed coefficients to the problem of counting rational points on curves over finite fields whose function fields are subfields of cyclotomic function fields, we count the number of generators of finite fields with powers of trace zero up to some point, answering a question of Z. Reichste...
متن کاملEfficient implementation of low time complexity and pipelined bit-parallel polynomial basis multiplier over binary finite fields
This paper presents two efficient implementations of fast and pipelined bit-parallel polynomial basis multipliers over GF (2m) by irreducible pentanomials and trinomials. The architecture of the first multiplier is based on a parallel and independent computation of powers of the polynomial variable. In the second structure only even powers of the polynomial variable are used. The par...
متن کاملClassical Wavelet Transforms over Finite Fields
This article introduces a systematic study for computational aspects of classical wavelet transforms over finite fields using tools from computational harmonic analysis and also theoretical linear algebra. We present a concrete formulation for the Frobenius norm of the classical wavelet transforms over finite fields. It is shown that each vector defined over a finite field can be represented as...
متن کاملClassical wavelet systems over finite fields
This article presents an analytic approach to study admissibility conditions related to classical full wavelet systems over finite fields using tools from computational harmonic analysis and theoretical linear algebra. It is shown that for a large class of non-zero window signals (wavelets), the generated classical full wavelet systems constitute a frame whose canonical dual are classical full ...
متن کاملLa factorisation de x pl − x ∈ Fp[x] selon la trace
Résumé: Nous décrivons quelques factorisations de polynômes sur des corps finis. Ces factorisation sont liées à la trace, aux compositions de polynômes et aux coefficients binomiaux. Comme conséquence nous obtenons la description des polynômes irréductibles Q ∈ F2[x] tels que les polynômes Q(1 + x+ x2) (ou Q(x+ x2)) sont également irréductibles. Abstract: We present a few factorizations of poly...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1503.07487 شماره
صفحات -
تاریخ انتشار 2015